Frequency-selective near-field radiative heat transfer between photonic crystal slabs: a computational approach for arbitrary geometries and materials.

نویسندگان

  • Alejandro W Rodriguez
  • Ognjen Ilic
  • Peter Bermel
  • Ivan Celanovic
  • John D Joannopoulos
  • Marin Soljačić
  • Steven G Johnson
چکیده

We demonstrate the possibility of achieving enhanced frequency-selective near-field radiative heat transfer between patterned (photonic-crystal) slabs at designable frequencies and separations, exploiting a general numerical approach for computing heat transfer in arbitrary geometries and materials based on the finite-difference time-domain method. Our simulations reveal a tradeoff between selectivity and near-field enhancement as the slab-slab separation decreases, with the patterned heat transfer eventually reducing to the unpatterned result multiplied by a fill factor (described by a standard proximity approximation). We also find that heat transfer can be further enhanced at selective frequencies when the slabs are brought into a glide-symmetric configuration, a consequence of the degeneracies associated with the nonsymmorphic symmetry group.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Stable states in the radiant heat transfer of the near field for two parallel slabs

In this paper, we study the dynamics of the radiative heat transfer of between two slabs. In these systems, depending on the type of slabs and the thermal interaction they have with their surroundings, they can have one or several stable states in the phase space. It can be seen that in these systems, quantities such as distance and thickness affect the states of these systems. We show that the...

متن کامل

Investigation of Radiative Cooling Using a Photonic Composite Material for Water Harvesting

The objective of this study is to design and analyse materials which are capable of harvesting water from thin air using condensation phenomenon which employs the radiative cooling approach. These passive cooling materials not only solve the water generating problems, but also employed in various cooling applications. The fundamental concept of radiative cooling is analysed and the performance ...

متن کامل

Near-Field Heat Transfer between Multilayer Hyperbolic Metamaterials

We review the near-field radiative heat flux between hyperbolic materials focusing on multilayer hyperbolic meta-materials. We discuss the formation of the hyperbolic bands, the impact of ordering of the multilayer slabs, as well as the impact of the first single layer on the heat transfer. Furthermore, we compare the contribution of surface modes to that of hyperbolic modes. Finally, we also c...

متن کامل

Two-dimensional photonic crystal slabs in parallel-plate metal waveguides studied with terahertz time-domain spectroscopy

In this paper, we report our experimental study on two-dimensional photonic crystal slabs embedded inside parallel-plate metal waveguides, using terahertz time-domain spectroscopy. We observe that the temporal response of the photonic crystal slabs is significantly dispersed, indicative of strong dispersion near the edges of the photonic band gap. In the frequency domain, we observe several gap...

متن کامل

Heat Transfer Study of Convective-Radiative Fin under the influence of Magnetic Field using Legendre Wavelet Collocation Method

The development and production of high performance equipment necessitate the use of passive cooling technology. In this paper, heat transfer study of convective-radiative straight fin with temperature-dependent thermal conductivity under the influence of magnetic field is carried out using Legendre wavelet collocation method. The numerical solution is used to investigate the effects of magnetic...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Physical review letters

دوره 107 11  شماره 

صفحات  -

تاریخ انتشار 2011